Галуа теория - Definition. Was ist Галуа теория
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Галуа теория - definition

Галуа теория

ГАЛУА ТЕОРИЯ         
созданная Э. Галуа теория алгебраических уравнений высших степеней с одним неизвестным; устанавливает условия сводимости решения таких уравнений к решению цепи других, более простых алгебраических уравнений (обычно низших степеней).
Галуа теория         

созданная Э. Галуа теория алгебраических уравнений высших степеней с одним неизвестным, т. е. уравнений вида

устанавливает условия сводимости решения таких уравнений к решению цепи др. алгебраических уравнений (обычно более низких степеней). Т. к. решением двучленного уравнения xm = А является радикал , то уравнение (*) решается в радикалах, если его можно свести к цепи двучленных уравнений. Все уравнения 2-й, 3-й и 4-й степеней решаются в радикалах. Уравнение 2-й степени x2 + px + q = 0 было решено в глубокой древности по общеизвестной формуле

уравнения 3-й и 4-й степеней были решены в 16 в. Для уравнения 3-й степени вида x3 + px + q = 0 (к которому можно привести всякое уравнение 3-й степени) решение даётся т. н. формулой Кардано:

опубликованной Дж. Кардано в 1545, хотя вопрос о том, найдена ли она им самим или же заимствована у др. математиков, нельзя считать вполне решенным. Метод решения в радикалах уравнений 4-й степени был указан Л. Феррари.

В течение трёх последующих столетий математики пытались найти аналогичные формулы для уравнений 5-й и высших степеней. Наиболее упорно над этим работали Э. Безу и Ж. Лагранж. Последний рассматривал особые линейные комбинации корней (т. н резольвенты Лагранжа), а также изучал вопрос о том, каким уравнениям удовлетворяют рациональные функции от корней уравнения (*). В 1801 К. Гаусс создал полную теорию решения в радикалах двучленного уравнения вида xn = 1, в которой свёл решение такого уравнения к решению цепи двучленных же уравнений низших степеней и дал условия, необходимые и достаточные для того, чтобы уравнение xn = 1 решалось в квадратных радикалах. С точки зрения геометрии, последняя задача заключалась в отыскании правильных n-угольников, которые можно построить при помощи циркуля и линейки; поэтому уравнение xn = 1 и называется уравнением деления круга. Наконец, в 1824 Н. Абель показал, что общее уравнение 5-й степени (и тем более общие уравнения высших степеней) не решается в радикалах. С другой стороны, Абель дал решение в радикалах одного общего класса уравнений, содержащего уравнения произвольно высоких степеней, т. н. абелевых уравнений.

Т. о., когда Галуа начал свои исследования, в теории алгебраических уравнений было сделано уже много, но общей теории, охватывающей все возможные уравнения вида (*), ещё не было создано. Например, оставалось: 1) установить необходимые и достаточные условия, которым должно удовлетворять уравнение (*) для того, чтобы оно решалось в радикалах; 2) узнать вообще, к цепи каких более простых уравнений, хотя бы и не двучленных, может быть сведено решение заданного уравнения (*) и, в частности, 3) выяснить, каковы необходимые и достаточные условия для того, чтобы уравнение (*) сводилось к цепи квадратных уравнений (т. е. чтобы корни уравнения можно было построить геометрически с помощью циркуля и линейки). Все эти вопросы Галуа решил в своём "Мемуаре об условиях разрешимости уравнений в радикалах", найденном в его бумагах после смерти и впервые опубликованном Ж. Лиувиллем (См. Лиувилль) в 1846. Для решения этих вопросов Галуа исследовал глубокие связи между свойствами уравнений и групп (См. Группа) подстановок, введя ряд фундаментальных понятий теории групп. Своё условие разрешимости уравнения (*) в радикалах Галуа формулировал в терминах теории групп. Г. т. после Галуа развивалась и обобщалась во многих направлениях. В современном понимании Г. т. - теория, изучающая те или иные математические объекты на основе их групп автоморфизмов (так, например, возможны Г. т. полей, Г. т. колец, Г. т. топологических пространств и т. п.).

Лит.: Галуа Э., Сочинения, пер. с франц., М. - Л., 1936; Чеботарев Н. Г., Основы теории Галуа, т. 1-2, М. - Л.,1934-37: Постников М. М., Теория Галуа, М., 1963.

Теория Галуа         
Тео́рия Галуа́ — раздел алгебры, позволяющий переформулировать определённые вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми.

Wikipedia

Теория Галуа

Тео́рия Галуа́ — раздел алгебры, позволяющий переформулировать определённые вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми.

Эварист Галуа сформулировал основные утверждения этой теории в терминах перестановок корней заданного многочлена (с рациональными коэффициентами); он был первым, кто использовал термин «группа» для описания множества перестановок, замкнутого относительно композиции и содержащего тождественную перестановку.

Более современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа, соответствующей данному расширению.

Was ist ГАЛУА ТЕОРИЯ - Definition